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Abstract

Model independent radiative correction to the recoil proton polarization for Lhe elastic
electron—proton scattering ls calculated within method of electron structure functions.
The explicit expressions for the recoil proton polarization are represented as a contraction
of the electron structure and the hard part of the polarization dependent contribution
into cross-section. The calculation of the hard part with first order radiative correction
is performed. The obtained representation includes the leading radiative corrections in
all orders of perturbation theory and the main part of the second order nexi-to-leading
ones. Numerical calculations illustrate our analylical results.

1 Introduction

It was proposed over 25 years ago [1] that recoil proton polarization in Lhe elastic process
€+ p — e+ P, can be used to measure the proton electric form factor {Ggp). This method
provides an alternative 1o the Rosenbluth separation and appears to be more sensitive to Ggp
in the GeV-range of 4-momentum transfers {Q?). Such measurements were done first at MIT-
Bates (2| and later on extended to higher @* = 3.5 GeV? at Jefferson Lab [3]. The latter
experiment provided the first evidence of significant deviation of Ggp from the dipole form at
higher Q2.

In the recent Jefferson Lab experiment [3] the events corresponding to elastic process

(k) + Plp) = € (ko) + Fp) (1)
as well as radiative process

E7 (k1) + P(p) = € (ka) + ¥(k) + Plps) (@)
have been analyzed.
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The main goal of thesc experiments is the measurement of the proton electric formlactor
Gg. Il can be done because the ratio of the longitudinal polarization of recoil proton to the
transverse one in Born approximation is proportional to the ratio Gps {Gg [1] where Gas is the
well known proton magnetic formfactor. This statement is valid if 3-vector of the longitudinal
polarization has orientation along the recoil proton 3-momentum, and 3-veclor of the transverse
polarization is within the plane (k;, P2}, The interpretation of these high-precision experiments
in terms of the proton eleciromagnetic formfactors Gy and Gg requires adequate theoretical
calculations with a per cent accuracy or better. Such calculations must include the first order
radiative corrections (RC) to the elastic cross—section [ due to radiation of rea! soft and virtual
photon} and full analysis of the radiative evenls. Moreover, leading higher order corrections
have Lo be taken into account.

All the correspending contributions can be joint within the framework of ihe electron struc-
ture function representalion, which is a QED analog of the well known Drell-Yan representa-
tion [4]. This representation was applied before for the calculation of the RC to unpolarized
electron-positron annihilation [5] and deep inelastic scattering [6} cross-sections.

In the present work we generalize the electron structure lunction representation for the case
of scattering of polarized particles, namely for the analysis of the recoil proton polarization in
elastic ep-scattering.

2 The leading approximation

The cross—section of the quasireal electron—proton scattering in the framework of the electron
structure function method can be written as a contraction of two electron structure functions,
that corresponds to the possibility to radiate hard collinear as well as virtual and soft photons
and electron-positron pairs by both the initial and the scattered electron, and hard part of
the cross—section that depends on shifted 4-momenta. This representation follows from the
quasireal electron method [7] that is suitable for description of the collinear radiation.

In the problem considered here we will be interested in the spin dependent part of the
cross-section only. For this case the corresponding representation can be written as

dalt(ky | Ky H H = L doll-tthardy(f |y Q2
o _ﬂ{ dzll 42D L) DN, YT 8 L=l s, @)
where m is the electron mass,
by =ik, kz-—, @ =k —k), Q* = —(h —k)* = 27, (1}
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_2p1[k;—kg) P _l—y _
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The electron structure function D®)(zy, L) is responsible for radiation by the initial polarized
electron, whereas the function D(}{z;, L) describes radiation by the scattered unpolarized
eleciron. The photonic contribution into the electron structure function is the same for polarized
and unpolarized cases, but the contribution due to pair production differs in the singlet channel
{8]. Therefore we can write

DW(z,L) = Dz, L) + Dy* + Dy ™, (5)
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D, L) = DYz, L)+ Dy 405 @ (6)
There exists many diflerent representations for the photonic contribution mto the structure

function [9], but here we will use the form given in [5] for D7, ;:E and Dj T

D*(z,Q’)=%ﬁ(1 s Bl T Lusge @
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JANC 1,2(5{1 2 4 (142)n 2)0(1-z~27m), (10)

where ¢ is the energy of the parent electmn and Ly = L + 2In(l — z). The above form of
- !+=_ .

the structure function Dy ° includes effects due to real pair production only. The correclion

caused by virtual pa1r is included in D”. Note that the terms containing o L® cance! each other

in the sum D" 4 DN

Instead of the photonic structure function given by Eq. (7), one can use the its iterative
form [10}

D) =80 -2+ 5 (5e) R, (1)

1
P()® - 0Pl = R, RE8AE=[AOA()T,

k
1 2
Pi(z) = ;'T’za{l—z—A)u(l -Z)(2lhA+ %) AL,

The iterative form (11) of D" does not include any effects caused by pair production. The
corresponding nonsinglet part of the structure due to real and virtual pair production can be
inserted into iterative form of D?(z, L) by replacing aL{2n on the right side of Eq. (11} by the
eflective electromagnetic coupling

Qs _ Sy q-2k
2 = ziel- 30 (12)
which is the integral of the running electromagnetic constant.

The limits of integration with respect to z and z; in the master formula (3) can be found
from the constrainl on the Bjorken variable # for the partonic process

— (K — ka)? z1yz @
= — = <lt, = 1
NI A AP Ik ik oy 13)

=

By taking into aceount also that 212 < 1 and gy = Q*/V, we derive from (13)

L& _viu-y
21 V'Z'"~V——Q2' (14)
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In the framework of the leading logarithmic approximation we have to take the elastic {Born)
cross-section as the hard part under the integral on the right hand side of Eg. (3)

doi® _ da"'lw"s( Q

dQdy ~ d@? YTV

) {15)
In the case of Lhe longitudinal polarization of the recoil proton, we have

pars _ A7 (-QY) | Q° \/T 2 ot
4232" v T amgont@): (19)

The quantity a{—@?) on the right hand side of Eq. (16) is the running electromagnetic constant
that account for the effects of Lthe vacuum polarization

o
a(g®) = — -
-l
For the transverse polarization of the recoil proton, the hard part of the cross-section reads
40 part e (-Q%) M Q? 2 2 M?
ard _ _« - = Gef— — = —_—, 17
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Note that in zeroth order of perturbation theory the photonic contribution into electron
structure funclion gives an ordinary é-function because (see also the iterative form (11))

lim %3(1 R TR (18)

{t is eusy to see that the representation (3) reproduces the Born cross-section in this casc
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3 Beyond the leading approximation

We can improve Lhe leading approximation for da"l,"dQQdy given by forinula (3) wilh
" /dQ*dy as a hard part of Lhe cross-section under the integral. It can be dene by making
more precise the expression namely for this hard part

L (B L
da:”d _ do' do"t™

dQidy ~ dQidy T dQPdy

The additional term on the right hand side of Eq. (20) takes inlo account RC due to real and
virtual photon emission without its leading part thal is absorbed by D-functions. To find
da"*" 1d Q*dy, we must calculate the corresponding cross-sections of the process (1) (with
virtual and soft corrections) and of the process (2), and Lhen subtract from their sum the right
hand side of formula (3) with

(20)

oty _ dot”
dQdy  dQdy '’
which appears in the same order of the perturbalion theory.
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We begin with the calculalion of the cross-section of the radiative process (2) (the cor-
responding polarizalion calculations were performed for the case of deep inelastic scattering

(11])

do™ _re*{d®) a - &£k

d@3dy Vgl am? * Wy
where g = & — k2 — k£ = p; — py. In further we will be interested in the polarization dependent
parts of the leptonic L, and hadronic H,, tensors and assume that the degree of initial electron
polarization is equal to 1. In this case we have

2AGElg’} — Guid’)

&
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where A is the 4-vector of the recoil proton polarization and we use the following notation for
tnvariants

us=(ky— k), s=2kks, t=-2kk, @®=uts+t, Q*=—u,

It is convenient to cxpress the recoil proton polarization 4-vector A in terms of the particle
4 -momenta and Lorentz invariants. Below we use Lhe following parameterization for A" and
L

2M?q, — ¢
Il - T — 4 P2 = _a? 2 .2
ar = 22Mhig + g haplpa — 22M%k0g — gPkipalpi + ¢ (e — AMP)R,
" QQL 1
Q1 = V@M (kipi + b2} + (2M2hig — ¢Pkipa)(2Mhyg + g2 )] -
kpr=V+u+i, 2igq=u+t.

(25)

[t ia easy to verify that 4-vector A" in the rest framne of the recoil proton has components
{0, f7), where 3--veclor # has orientation of the recoil proton 3-momentum in laboratory system.
One can verify also that A* A" = 0 and in the rest frame of the recoil proton

Al:(olﬁ'ljl ﬁj_=11 fidy =0,

wliere the 3-vector i is within the planc (E,,ﬁg} in Lhe laboratory system.
For the case of longitudinal polarization, the contraction of leptonic aid hadronic Lensors
yields

LY H,, 2m? Im? ]
"'—q4 == =G 2V)F(E) - (e 2v)( 4 ““‘:_q;)p(qur (26)
13 2 4 2: 2 2 1 1 2 2 2 3 2 F(q2)
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The physical meaning of quantities i and g7 is as [ollows: g7 and g? are the values of 4% in
the cases of the initial-state and final-state collinear radiation, respectively. When writing the
formula {26), we tack into account the fact that terms containing the electron mass squared
contribute only in collinear kinematics.
To separate the contribution into the right-hand side of Eq. (26) due to collinear radiation
for the pole-like terms, we apply the operations P, and £,

‘}Jr(qzsuaf':s) = %(1 - ﬁ" + P‘)f(qz,u, t,s), f.’;f(qz,u,s,i) = )r(‘ﬁznurshﬂ)

for arbitrary nonsingular function at { — 0 and similarly for 1/s terms. Therefore, we can
rewrite the right hand side of Eq. (26) in the form

—2—”‘—(q. +2V)P, - :(u +2V)(1+ S‘Tq‘z)ﬁ}ﬁ(q’) + {%ﬁ)m (27)

(g +2V)(e* + ¢}
gis
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For the case of transverse polarization the contraction of leptonic and hadronic tensors is
more complicated,

1 Hy ={[g* (v +14+2V) +(4M° - ) (u+ 1) ] R+ [P (u+ t +2V)(E -+ 2V{L—y)}+ (28)

g
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The expression in the round brackets on the right hand side of Eq. (28) can be rewritien in the
form suitable for the photon angular integration as follows:
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To perform the photon angular integration we choose the system El + Py - .1:2 = (. In this
system the energies of particles are

a vtV V(l—y)—u 2M? 4+ Vy _ R4 M

= e——_—— = kon = y = R = R
ko R k1o Pio /R Pao WA

2\/?‘ 20 2‘/§ (30)

e=u+Vy, R=a+ M.
Taking the OZ axis along the initial proton 3-momentum ir the chosen system we also have

2M? — 2p;0pa0 — ¢°

e =cosfy = — g=cosfy=—"——--—o 3
ET R dallml T 201kl e
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T /R

where 8;(f) is the polar angle of the initial (scattered) electron and 8 is the pholon polar
angle. Besides Eqs. (30) and (31) we will use the relation

cpkdepz

—= bk —ky— k-
}to P (q+pm 2 p2) =

3 Rd{,o deos by . {32)

Let us concentrate on the case with longitudinal polarization of the recoil proton. For the
terms containing m?/s?, m2/t2, P/t and P, /s we can use the following formulae

m?dipd cos 8 midpdcos0, 2R dipd cos Oy 2R .
[ 2ms? - f 2ni2 e f 2rs  a{V(l—y)— u)"L' +L), (33
dpdcosfy 2R | V- —wu)? AV 4w
I R e

Terms which contain (1 — &), (1 ~ P,) operators can be integrated over the azimuthal
angle and keep the integration with respect to ¢* using & cos8 = d¢*/2|5\ [|F2] ,

dp [ 2R
2rs2lpiilpel  elg? —Q.I(Vfl—y)—u) 2m(— ¢)2Fpnlipzl alg — g|(V +u)

The limits of ¢*-integration in this case can be derived from the restriction on cos® in the
chosen system; |cos 9g| < 1. This restriction leads to the relation

(34)

E<g<q, &= 2R[2uM’ Vy(e + Vy) & (u + Vy)/V2y2 — 4ul?) . (35)

By using Eqs. {33), (34) and (35) we can write the cross-section of the radiative process
(2} in the case of longitndinal polarization of the recoil proton as follows

g G, (N )y
dQﬂdy u+ Vy u?(u + Vy) :

(u+2V)(u? + q‘)
2(u+ V)¢ - u)

(36)
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The appearance of the #-function on the right side of Eq. (36) is connected with the restric-
tion on the photon hardness in the radiative process (2)

ut Vy v 2ZMAc
S >A o y>-—+—,
b= ATy vyt Ty
where Ac is the Lthe minimal photon energy in the chosen coordinate system.
To be complete, we should also take into account the RC duc to virtual and soft {with the
energy smaller than Ae} pholon emission to the cross-section of the elastic process (1). It can
be written as (see, for example, {6])

(37)

dotvs _ M (-QY), @ oo IM*(Ae)® 3 .
agidy = v gy @ [ - e V( ECE R
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Therefore, the sum of the cross-sections of the processes (1) and {2) is defined by the formula

dﬂ"m doh do_ll(ﬂ vy
dQidy T 30y T 40y

To include the hard cross-section into the electron structure function representation (3)
in the form (39) and get rid of the double counting, we musi remove from the sum (39) the
contribution which arises in the representation (3) in the first order with respect to fine structure
coustanl o al

(39)

4
da:,,,,, . da"?

dQ*dy  dQ¥y’
The procedure for finding this contribution is described in {6]. We can verily thal it equals to
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T'hus, we can wrile the final resull for the dfr,lmd/d @Q*dy in the following very compaci form
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where P is the symbol of the principal value integration. When writing the last formula, we
used the following relations

7 dalriet) - fad)] _ ¢ f(q) _ )
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where the symbol P indicates how one shall integrate the unphysical smgu]a.r]ty at ¢*
These relations allow to see that infrared singularities of separate terms in do""" JdQ@%dy cxactly
cancel each other. That is why we omitted from argument of the #-function on the right side
of Eq. (41) the term —2M Ae/V. For numerical calculations the symboal P can be understood
as

% d¢ % d¢ @
a2y — 2y _ a +
P EF@) = [ T (@) - F) + Pluylog 3=
ez o

The hard part of the cross-seclion in the case of transverse polarization of the recoil proton
can be derived in full analogy wilh the above. The main difference is caused by the fact that the
veclor of transverse polarization has complicated dependence on the photon azimuthal angle ¢

and therefore even ¢ integration becomes nontrivial. The straightforward calculations give
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For invariants s and ¢ on the right side of Eq. (44), we can neglect the electron mass and use
here the simplified expressions

8= ¢3 — 3 cosyp, —f = C1; — I; CO8YY, {45)
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The integrals over ¢ can be performed in terms of elliptic functions X and II
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The function A(e,x} (¢ = arcsin{{1 — b;)/(1 — «?))) is non-singular Heuman’s Lambda
function varying from 0 to 1 {see {12] for details and exact definitions). It is related with
complete elliptic integral II{(b,, ) of the third kind

2 _ 1 — A(e, &) 2 R
Slb,r) = *‘/ﬁ—mf{c() . (48)

For ¢ = 0 (or by — 1) this function goes to zero. In the last formula singular behavior of
(b, x) for by — 1 is extracted explicitly in the first term. This limit corresponds ta collinear
radiation:

2M s,z

bll,l =

vtV a2
Vi=by = ————l¢' -
1t (l+b.)s.'\/§xlq |
V-a
by = — =% __|#-¢ 49
S e P, L “
where & = y*V? — AM?u. As a result of substituting Egs (46-48) into the formula for hard

cross-seclion {44) we arrive al the same structure of singularities as in the longitudinal case
(36). In the collinear limit ¢* — ¢} ,, we have

FX{1 — &% fbyy,) = Ky beaybris, Brs — 1, Ale, k) = 0
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‘These limiting formulae allows us to use relations (42,43) to wrile the final expression for hard
cross section in such a form that provides an explicit cancellation of infrared divergence in Lhe
same way as in the case of the longitudinal polarization.

Combining all results together, we obtain the final formula for cross section in the trans-
versely polarized case:

| ;2—_ 3;2 | J'(M':q taly, it 21/)(14;)/)(::2 —ay,
e

x4 g O (Wl + ).

The theoretical formula for the ratio of longitudinal and transverse polarizations of the
recoil proton thal was measured in recent experiments [2, 8} is defined by the ratio of the right—
hand side of Eq. (3} for longitudinal polarization (with (41) as the bard cross-section under
integral sign} and for transverse one (with {44) as the hard cross-section). This high precision
formula takes into account model independent RC with all the leading and the main part of
the next-to-leading corrections, and has accuracy at the level of per mile.

4 Numerical analysis

The ratio of proton elastic formfactors G.p/Gmp measured experimentaliy {2, 3] is related to
the ratio of recoiled proton polarization components. At the Born level (i.e. without RC) the
ratio of polarizations is defined by the ratio of spin dependent cross section given by {16) and

(7

Pr o}
P e

The plioton spectrum can be defined as a function of missing mass W2 = yV — Q2 (either y
or photon encrgy in the chosen frame E, ) of observed cross section or,{Wi) defined by master
equation (3). An integral over y gives a radiative correction to recoil polarizations and to their
ratio. Let us define the following quantities

2 _O'T.L(W:;) 2 _RT(W;) _ dW:E. 2 _rr
RralWn) = =222, r(Wi) = i, = [ TR R, =T ()

In Figure 1 the Rry as a function of missing mass is presented. For very small values
of missing mass or alternatively for y — Q*/V the cross sections reproduce the -function
behavior. In the limit (18) there are three delta-functions {from D, DP and from y-dependence
of Born cross section) and only two integration. So we have behavior as in Eq. (18) in this
limit. Only Lhe factorization part is important here, so both longitudinal and transverse R's are
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Figure 11 Longitudinal and transverse polarization parls of cross seclions normalized Lo born
ones (left plot) and their ratios (right plot) (see Eq.(52) for exact dehnitions) as a function of
tissing mass squared for beam energy 4.26 GeV (V=8GeV?).

practically the same. For larger values of W2 (or y) nonfactorized part coutribution becomes
important, It can be seen rom Figure 1b, where ratios of these spectrum are presenied.

Figure 2 presents the results integrated over dy = dW2/V. This inlegration has to be
performed up to some specific values of a cut on the missing mass which is defined by experi-
mental conditions. Using the hard cut leads to negative values RC (or rr . becomes less then
one), because the contribution of loops, which is usually negative, dominates in this case. If
the positive contribulion of hard photon radiation is allowed by using less stringent culs, the
radiative correctlion to polarized parts of cross section goes up and can exceed several tens of
per cents. The right plol in Figure 2 gives a radiative correction factor to the polarization
ratio or Lhe mecasured ratio of formfactors. One can scc that the radiative correction Lo it is
rising not only with the increasing value of the cut but also with increasing Q% Within the
kinematical conditions of JLAB, the radiative correction is ai the level of several per cents or
smaller if the hard cut on missing mass (or missing energy) is used.

5 Discussion and Conclusion

[n this paper we calculated radiative corrections to observable quantities in elaslic electron-
prolon scaltering where polarizalion of the final prolon is measured. Observable cross section
of this process has to include QED loop effects and contributions of radiation of real pholons
and electron-positron pair creation from leptonic line. In this paper the method of structure
functions is applied for this calculation. Within this approach it is possible to caleulale the
contributions of leading and next-to-leading order in all order of perturbation theory. Obtained
explicit formulae are free from infrared divergence and can be used for straightforward numerical
analysis. This numerical analysis was done for the kinematical condition of current and futire
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Figure 2: Radiative correction to recoil polarization rations rz,; {left plot) and r {right plot)
(52) within the kinematical conditions of JLAB, as a function of (? and value of a cul on
missing mass for bean energy 4.26 GeV (V=8GeV?}. Solid (dashed) line on the left plot shows
ry [i"l,}.

experiments al JLAB. The concrete values of radiative correction factors were calculated. It
was shown thal radiative correction to observable ratio is at the per cent level.

We nole that the problem was solved for the case when kinemalical variable Q2 is recon-
siructed via eleclron momentum measured. Another way is possible for which this variable
is calculated using the measurement of final proton tmomentum. This case requires another
treatment, which will be done elsewhere, Also the present calculation does not include effects
due to two-photon coupling to the proton.

The target considered in this paper is proton, however the resulis can be straightforwardly
generalized lo the case when a nuclear target is uscd instead. In this case the eflects of Fermi
motion and finite momentum of spectator nucleon system have to be taken into account.
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